Convolution, correlation, and Fourier transform
Fourier transform
The continuous Fourier transform of $a(x)$ is defined by:
\[\hat{a}(u) = \int a(x)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,x}\,\mathrm{d}x.\]
The inverse Fourier transform of $\hat{a}(u)$ then writes:
\[a(x) = \int \hat{a}(u)\,\mathrm{e}^{+\mathrm{i}\,2\,\pi\,u\,x}\,\mathrm{d}u.\]
Convolution product
The convolution product of $a(x)$ by $b(x)$ is defined by:
\[c(x) = \mathrm{Conv}(a,b)(x) = \int a(y)\,b(x - y)\,\mathrm{d}y = \int b(z)\,a(x - z)\,\mathrm{d}z,\]
with $z = x - y$. This also shows that the convolution product is symmetrical:
\[\mathrm{Conv}(b,a) = \mathrm{Conv}(a,b).\]
Taking $z = x - y$, the Fourier transform of the convolution product can be expanded as follows:
\[\begin{align*} \hat{c}(u) &= \int c(x)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,x}\,\mathrm{d}x\\ &= \iint a(y)\,b(x - y)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,x}\,\mathrm{d}x\,\mathrm{d}y\\ &= \iint a(y)\,b(z)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,(y + z)}\,\mathrm{d}y\,\mathrm{d}z\\ &= \int a(y)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,y}\,\mathrm{d}y \int b(z)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,z}\,\mathrm{d}z\\ &= \hat{a}(u)\,\hat{b}(u). \end{align*}\]
Correlation product
The correlation product of $a(x)$ by $b(x)$ is defined by:
\[r(x) = \mathrm{Corr}(a,b)(x) = \int a(x + y)\,{b}^\star(y)\,\mathrm{d}y = \int {b}^\star(z - x)\,a(z)\,\mathrm{d}z,\]
where ${b}^\star(y)$ denotes the complex conjugate of $b(y)$ and with $z = x + y$. From this follows that:
\[\mathrm{Corr}(b,a)(x) = {\mathrm{Corr}(a,b)}^\star(-x).\]
Taking $z = x + y$, the Fourier transform of the correlation product can be expanded as follows:
\[\begin{align*} \hat{r}(u) &= \int r(x)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,x}\,\mathrm{d}x\\ &= \iint a(x + y)\,{b}^\star(y)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,x}\,\mathrm{d}x\,\mathrm{d}y\\ &= \iint a(z)\,b^\star(y)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,(z - y)}\,\mathrm{d}y\,\mathrm{d}z\\ &= \int a(z)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,z}\,\mathrm{d}z \left(\int b(y)\,\mathrm{e}^{-\mathrm{i}\,2\,\pi\,u\,y}\,\mathrm{d}y\right)^\star\\ &= \hat{a}(u)\,{\hat{b}}^\star(u). \end{align*}\]
Discrete convolution and correlation
Following the continuous definition, the discrete convolution of $a$ by $b$ is given by:
\[c[i] = \sum_j a[j]\,b[i - j] = \sum_k b[k]\,a[i - k],\]
with $k = i - j$ and where the sums are taken for all possible valid indices.
Similarly, following the continuous definition, the discrete correlation of $a$ by $b$ is given by:
\[r[i] = \sum_k a[i + k]\,{b}^\star[k] = \sum_k {b}^\star[j - i]\,a[j],\]
with $j = i + k$ and where the sums are taken for all possible valid indices.